Second phase changes in random m-ary search trees and generalized quicksort: convergence rates

نویسنده

  • Hsien-Kuei Hwang
چکیده

We study the convergence rate to normal limit law for the space requirement of random m-ary search trees. While it is known that the random variable is asymptotically normally distributed for 3 ≤ m ≤ 26 and that the limit law does not exist for m > 26, we show that the convergence rate is O(n) for 3 ≤ m ≤ 19 and is O(n), where 4/3 < α < 3/2 is a parameter depending on m for 20 ≤ m ≤ 26. Our approach is based on a refinement to the method of moments and applicable to other recursive random variables; we briefly mention the applications to quicksort proper and the generalized quicksort of Hennequin, where more phase changes are given. These results provide natural, concrete examples for which the Berry-Esseen bounds are not necessarily proportional to the reciprocal of the standard deviation. Local limit theorems are also derived. Abbreviated title. Phase changes in search trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase changes in random m-ary search trees and generalized quicksort

We propose a uniform approach to describing the phase change of the limiting distribution of space measures in random m-ary search trees: the space requirement, when properly normalized, is asymptotically normally distributed for m ≤ 26 and does not have a fixed limit distribution for m > 26. The tools are based on the method of moments and asymptotic solutions of differential equations, and ar...

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

Additive functionals on multiway search trees

We derive asymptotics of moments and limiting distributions, under the random permutation model on m-ary search trees on n keys, of functionals that satisfy recurrence relations of a simple additive form. Many important functionals including the space requirement, internal path length, and the socalled shape functional fall under this framework. The limiting behavior of these functionals exhibi...

متن کامل

Refined quicksort asymptotics

The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non-degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002